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ABSTRACT 

In a sustainable wastewater treatment system, wastewater is viewed as a resource rather than a 

waste. Carbon recovery as poly-hydroxybutyrate (PHB) has attracted attention in the last two decades. 

In this study, the possibility of combining PHB accumulation in the biomass along with wastewater 

treatment was investigated. Three operational conditions and addition of acetate and fermented corn 

stillage as carbon sources in a sequencing batch reactor (SBR) were evaluated. The react phase of a 6 

hour cycle of a SBR was divided into anaerobic and aerobic sequences to investigate the best 

operational condition to maximize PHB production and wastewater treatment. Condition B, where the 

react cycle was divided into two rounds of 45 minutes of anaerobic sequence and 2 hours of aerobic 

sequence each with the addition of acetate in the anaerobic sequence, gave a PHB content of 37.4±4.1% 

(wt./wt.) in the biomass. The acetate added was 1200 mg-C/cycle. Using fermented Mg(OH)2-

precipitated corn stillage, the PHB content in the biomass achieved was 24.3% (wt./wt.) and a TP 

content of 8.6% (wt./wt.) for the addition of 800 mg-C/cycle fermented Mg(OH)2-precipitated corn 

stillage. The results of this study showed that it is possible to recover both PHB and phosphorus by 

using fermented corn stillage as a carbon source and at the same time treat municipal wastewater. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

To solve the scarcity of global resources and to reduce energy consumption, there is a new 

thinking of making municipal wastewater treatment a sustainable system and infrastructure. In 

recent decades, wastewater is seen more as a source of valuable resources and a raw material 

carrier. Domestic wastewater contains organic matters and three main nutrients: phosphorus, 

nitrogen and potassium (Jessen et al., 2007). The goal of sustainable wastewater treatment systems 

is to provide the public with clean and safe water and at the same time ensure the social, 

environmental, and economic sustainability of communities that the water utilities serve (USEPA, 

2012). Nitrogen, phosphorus and carbon sources present in wastewaters are all seen as recyclable 

sources. Combining wastewater treatment with resource recovery has been recognized as a 

promising method to realize the goal of a sustainable wastewater treatment system.  

Among the various materials recovered from municipal wastewater, carbon in wastewaters 

can be recovered as poly-hydroxyalkonate (PHA), a biopolymer. This approach has attracted a lot 

of attention in recent years. Due to the increased concern of possible depletion of fossil fuels and 

high crude oil prices, biopolymers has been thought to be an alternative material to replace 

traditional polymer made from fossil fuels. PHAs are naturally produced by many bacteria. 

Industrial production of PHAs is usually based on pure microbial cultures and the operational cost 

can be high. The cost of developing pure culture fermentation and commercialization of PHAs is 

about 4-9 times higher than that of conventional plastics (Moita and Lemos, 2012). About 30% of 

the total PHA production cost is due to the cost of the feedstocks, such as glucose and sucrose 

(Lee, 1996). If PHAs are produced using mixed cultures and a carbon source of low cost, the 

production cost of PHAs can be significantly reduced. Synthesizing poly-hydroxybutyrate, a PHA 
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compound in the municipal wastewater treatment system, using municipal wastewater is one 

option to reduce the cost of PHAs production. Harvesting PHB from a municipal wastewater 

treatment system can be an economic strategy for a sustainable wastewater treatment system.  

Researchers have shown that sequencing batch reactor (SBR), among all wastewater 

treatment systems, is very effective in accumulating PHBs within the biomass. Since the treatment 

sequences of SBRs can be easily manipulated, SBR is highly efficient in treating the BOD5 in the 

wastewater and, at the same time, allow for nutrients removal. For example, SBRs have been 

shown to remove 89%-98% of BOD5 with good total nitrogen removal greater than 75% (USEPA, 

1992). By adding an anaerobic and anoxic sequence, SBR can accumulate PHBs and total 

phosphorus in the biomass which can then be recovered. 

This is accomplished through a feast and famine approach to enhance PHB accumulation 

(Salehizadeh et al., 2004). The SBR process can also allow addition of carbon substrate at different 

times of the cycle sequences to manipulate feast/famine sequences and to maximize PHB synthesis 

(Coats et al., 2011). Research on PHB accumulation by using SBR typically uses pure cultures 

with some studies using mixed cultures. For instance, Serafilm et al. (2004) used acetate and 

propionate as carbon sources to grow PHB in a SBR system and obtained PHB content of 67.2% 

of cell dry weight. To reduce the cost of PHB production, researchers are working on manipulating 

the treatment operations and using low cost, waste carbon source to maximize production of PHB. 

 

1.2 Objectives 

This research will investigate the influence of different carbon sources and different 

operational strategies on PHB production in a SBR system. The specific objectives of this study 

are: 
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1. Determine the impact of treatment operation strategies (specially, the SBR cycle       

sequences) on PHB accumulation. 

2. Determine the impact of adding carbon waste streams from other sources to 

supplement the carbon in the municipal wastewater for PHB accumulation. 

 

1.3 Thesis Organization 

The thesis is organized into 4 chapters with 2 appendices. Chapter 1 provides the 

introduction and objectives of the study. Chapter 2 is a literature review comprising of information 

on nutrient recovery from wastewater, and PHB production with wastewater and work conducted 

by others. Chapter 3 presents the method and results of this study. Chapter 4 is the conclusion 

chapter. 

 

1.4 References 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

Water, food and energy are three of the major resource concerns facing the world today. 

To live more sustainably, every aspect of our infrastructure is being examined to see whether usage 

of these resources can be minimized and at the same time recovered or reused. Useful materials 

can be recovered from waste materials and energy used can be reduced or recovered by better 

managing the resources available. One of the new approaches is making the urban infrastructure, 

sustainable by closing the urban water cycle loop. A component of the urban water cycle is the 

municipal wastewater treatment systems. The goal of sustainable wastewater treatment is to 

provide the public with clean and safe water and at the same time reduce resource used such as 

energy and enhance recovery of useful products (USEPA, 2012).  

Conventional wastewater treatment process is capital-intensive and energy-intensive. Of 

all the energy used in the United States (US), drinking water and wastewater systems account for 

approximately 3-4 percent of energy use in the United States. In addition, wastewater treatment 

plants, result in emissions of more than 45 million tons of greenhouse gases annually (USEPA, 

2013). Water pumping and energy consumption for the treatment process at a treatment plant can 

comprise about 56% of total energy use at the treatment plant (Means et al., 2004). Biodegradation 

of carbonaceous wastes in conventional wastewater treatment process results in carbon dioxide 

emission which contributes towards global climate change. Sewage sludge from the treatment 

plants are typically land applied or landfilled which may contribute towards methane emission. 

Currently, there are over 15000 municipal wastewater plants in service in the US (USEPA, 2007). 

Emission from wastewater treatment plants and high use of energy are contrary to the sustainable 

development of a responsible society. 
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To address some of these issues, there is a paradigm shift in viewing wastewater as a 

resource and not as a waste. Municipal wastewater contains organic matter and three main 

nutrients: nitrogen, phosphorus and potassium (Jessen et al., 2007). These materials can be 

recovered for use, if the treatment systems are designed or operated to harvest these materials. This 

review mainly focuses on current research and technology of resource recovery from municipal 

wastewaters.  

 

2.2 Nutrients Recovery From Municipal Wastewater as Struvite 

Domestic wastewater contains three main nutrients: phosphorus, nitrogen and potassium. 

Large quantities of nitrogen and phosphorus present in the treated wastewater that are discharged 

into bodies of water are the main cause of eutrophication. Conventionally, nitrogen in the 

wastewater treatment plants is removed by biological methods. After nitrification, nitrate is 

converted in to nitrogen gas by denitrification. A common approach for removing phosphorus from 

wastewater is by metal salts precipitation, but this approach makes the precipitate unrecoverable 

for possible reuse such as fertilizer (Donnert and Salecker, 1999).  

In recent decades, there are many research on the recovery of nitrogen and phosphorus for 

use as fertilizer and other purposes. Phosphorus has been viewed by many scientists as a limited 

resource. Recovery of phosphorus from municipal wastewaters will be one of the methods in 

meeting the world’s demand for phosphorus.  

One of the approaches in recovering nutrients from wastewaters is the precipitation of 

magnesium ammonium phosphate hexahydrate (MgNH4PO4•6H2O), a white crystalline 

compound, also known as struvite (Booker et al., 1999). Recovery of nutrients in wastewater 

treatment plants before they are formed or precipitated can protect treatment equipment as well as 
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provide a renewable nutrient source for agriculture. Struvite is formed according to the general 

reaction shown below, although the chemistry involved in struvite precipitation can be complicated 

(Doyle, 2002). 

            Mg2+  + HPO4
2- + NH4

+ +OH- +5H2O = > MgNH4PO4·6H2O  

Struvite composition (i.e., nitrogen, phosphorus, and magnesium ions in equal molar 

concentrations) makes it a potentially marketable product for the fertilizer industry. (Booker et al., 

1999). Research found that the nutrient existing in wastewater can supply 15% - 20% of Norway’s 

fertilizer market if the nutrients in the wastewater can be completely recycled (Jenssen and Vatn, 

1991). More than 40% of the fertilizer used in developing countries may be supplied by recovering 

nutrients from their municipal wastewaters (Etnier and Jessen, 1997). Struvite displays certain 

excellent fertilizer qualities under specific conditions such as low solubility as compared with 

standard fertilizers (Munch, 2001). Furthermore, struvite recovered from wastewater treatment 

plants has low heavy metal contents as compared to phosphate bearing rocks that are mined and 

supplied to the fertilizer industry (Driver et al., 1999).  

The efficiency in recovering these nutrients is one of the more important factors in 

determining whether this method is practical and economical. Phosphorus removal efficiencies 

can range from 70% to 97% and nitrogen removal efficiency can range from 65% to 90% 

depending on treatment methods and types of wastewaters (Jaffer et al., 2002; Doyle et al., 2002; 

Liu et al., 2011). One challenge for the recovery of struvite in wastewater is the low magnesium 

concentration in municipal wastewater compared to nitrogen and phosphorus. Addition of 

magnesium may raise the cost of recovery (El Diwani et al., 2007).  

The economic feasibility of recovering nutrients from wastewaters by precipitation as 

struvite was estimated by several researchers. Munch and Barr (2001) achieved an ortho-P removal 
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of 94% by adding magnesium hydroxide slurry as a magnesium source and as an agent for adjuting 

the pH. They estimated that, for this method, the cost for struvite recovery from Oxley Creek 

wastewater treatment plant would range from A$13,000 to A$149,000 per year (Munch and Barr, 

2001). This equals to about $276 per ton of struvite. The suggested market value of struvite in 

Australia was $198-$330. Jaffer et al. (2002) used MgCl2 as magnesium source and sodium 

hydroxide to adjust the pH. Ninety seven percent phosphorus removal was achieved. The cost of 

chemicals used in a full-scale struvite crystallization plant could be at least $65,755 per annum 

(Jaffer et al., 2002). Part of this cost can be recovered by selling the struvite product. The market 

value of struvite should be at $283 per ton to outweigh the chemical costs used (Jaffer et al., 2001). 

Production of struvite can reduce the sludge production, which will result in operational savings 

such as decrease in landfill space needed for sludge disposal and lower maintenance problems due 

to struvite deposition (Shu et al., 2006; Le Corre et al., 2009). All these benefits can compensate 

for the cost of struvite production and bring benefits to the wastewater companies. Even though 

struvite is more expensive than phosphate fertilizers, struvite recovery can be a source which can 

alleviate the depletion of scare phosphate bearing rocks. 

Nutrient recovery technologies have not been widely applied due to the cost of nutrient 

recovery being higher than producing fertilizer from phosphorus bearing ore. To save money and 

to make wastewater treatment plant more efficient and sustainable, the challenge is to combine the 

nutrient recovery technologies with the wastewater treatment process more effectively that 

maximizes treatment and product recovery. Further research is still needed to achieve both nutrient 

recovery technologies and treatment of wastewater in practice. 
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2.3 Source-Separated Urine 

In 1990s, separating urine and faeces attracted considerable attention in Europe as a 

sustainable wastewater treatment system (Kirchmann and Pettensson, 1995). Urine contains a high 

concentration of nutrients, especially nitrogen and phosphorus, i.e. about 80% of the nitrogen, 50% 

of the phosphorus in household wastewaters come from urine (Jonsson et al., 1997). Thus, 

separating urine from domestic faeces may enable the reuse of this nutrient more effectively 

(Maurer et al., 2006). Because of the high ammonia and phosphorus concentration in urine, struvite 

precipitation is one of the promising ways in extracting these nutrients from urine. Approximately, 

90% nitrogen removal and around 98% phosphorus removal from urine can be achieved (Antonini 

et al., 2011; Ganrot et al., 2008; Kabdasli et al., 2006; Ban and Dave, 2004).  

However, effective and convenient facilities for separating urine are not available and are 

being researched. For example, the No-Mix is a promising technology for collecting urine. No-

Mix toilets have been installed in seven European countries and have received high acceptance 

(Lienert et al., 2010). For large scale installations, the efficiency of No-Mix technology need to be 

further enhanced and the benefits need to be demonstrated (Rossi et al., 2009). 

 

2.4 Carbon Recovery as Methane 

Methane and carbon dioxide production occurs through acetate cleavage. It mostly occurs 

during the anaerobic treatment process. Methane emission from wastewater treatment plants were 

estimated to account for approximately 5% of the total global greenhouse gas emissions every year 

(Czeplel et al., 1993). Methane is second to CO2 in its global contribution to radiative forcing (EI-

Fadel et al., 2001). To control global warming, reduction of emission of CO2 and CH4 is important.  
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Methane is the main component of natural gas. If methane is recovered, it can be a source 

of energy. Recovery of methane from wastewater treatment plants is one of the strategies for 

controlling methane emission as well as harvesting energy for the sustainable operation of 

wastewater treatment plants. 

Anaerobic fermentation is a typical approach in producing methane from wastewater 

sludge. The efficiency of hydrolysis and fermentation is one of the factors impacting the 

production of methane. In recent decades, various approaches have been used to improve the 

production of methane. In wastewater treatment plants, sludge digestibility is highly dependent on 

the sludge quality (primary, secondary or mixed), especially the contents of proteins, 

polysaccharides, lipids and humic acid like substances (Dumas et al., 2010). Besides the types and 

makeup of the sludge, treatment conditions such as temperature and digestion time are key factors 

which have considerable influence on methane production. Gao et al. (2011) combined up-flow 

anaerobic sludge fixed bed reactor, an anoxic tank and an aerobic membrane reactor to recover 

methane from domestic wastewater at different HRTs. Their results showed that by changing the 

HRT from 8 hr to 1 hr, the methane production increased from 115.0 mL CH4/gCOD removed to 

187.8 mL CH4/gCOD removed. Dumas et al. (2010) compared the methane recovery efficiencies 

of hyper-thermophilic (65℃) aerobic reactor (TAR) coupled with a mesophilic (35℃) anaerobic 

digester (MAD) and that of a conventional mesophilic anaerobic digester (MAD). In their research 

using an SRT of 21 days and 42 days, the total methane yield was 30% and 41.3%, respectively 

for MAD-TAR and 26% and 41.1%, respectively for MAD. Therefore, based on different 

operating conditions and different reactors, methane production efficiency will change 

accordingly. Selection of the most suitable treatment process to recover methane for different 

sludge or organic material is very important with cost and efficiency in consideration.  
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Certain anions in wastewater influence methane recovery efficiency. Gimenez et al. (2012) 

tested the methane recovery efficiency from urban wastewater in a submerged anaerobic 

membrane bioreactor. They found that sulfate in the wastewater can impact and reduce methane 

producing efficiency. The methane recovery efficiency obtained at 33℃ was 57.4% but increased 

to 83% when there was no sulfate present in the wastewater. Wu et al. (2011) showed that Cu (II) 

present in water had an influence on methane production. They found that Cu(II) concentrations 

at 5 mg/L had a slightly stimulating effect on the activity of methanogenic bacteria, but the 

production rate was completely inhibited at a Cu(II) concentration of 300 mg/L.    

Combined hydrogen (H2) production with CH4 production is another promising approach 

in building sustainability in sustainable wastewater treatment plants. H2 is considered as a clean 

energy, if it can be produced by fermenting wastewater. However, production of H2 by 

fermentation resulted in around 80%-90% of the initial COD remaining in the wastewater in the 

form of various volatile organic acids (Logan et al., 2004). Thus, the remaining COD can be used 

to produce methane, which can make the whole process more sustainable.  Some research showed 

that this approach is feasible. Producing methane after hydrogen, is a promising way to enhance 

COD removal and recover energy efficienctly (Mohan et al., 2008; Ting et al., 2004). However, 

though these two processes can be operated simultaneously, further economic evaluation is needed 

to ensure this approach is financially feasible. 

 

2.5 Carbon Recovery as Poly-hydroxyalkanoates 

Poly-hydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates which are 

produced by bacteria to store carbon and energy. In recent years, PHAs have attracted attention as 

a raw material for the production of biodegradable plastics. Conventional plastics produced from 
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nonrenewable resources such as petrochemicals are non-degradable unless modified with a 

biodegradable co-substrate. Non-biodegradable plastics are hard to dispose of and cause various 

environmental problems. Some countries have enacted a series of policies to reduce the use of 

plastics. However, to completely solve the environmental problems associated with plastics, a 

substitute material needs to be provided. PHAs are biosynthesized from renewable resources, 

allowing for a sustainable and closed-cycle process for the production and use of such polymers 

(Braunegg et al., 1998).  

PHA has been industrially produced by pure cultures. However, wider production of PHA 

is limited by the cost of PHA production as compared to oil-derived plastics (Choi and Lee, 1997). 

About 30% of the total PHA production cost is due to the cost of the feedstocks, which are typically 

sugars such as glucose and sucrose (Lee, 1996). Thus, to decrease the cost of PHA production, 

lower cost carbon sources in mixed cultures instead of pure cultures need to be used. Industrial 

wastewaters have been considered as carbon sources for PHA production. Besides lowering the 

cost of PHA production, combining PHA production with wastewater treatment may result in 

making the municipal wastewater treatment process more sustainable and may enhance the 

economics of wastewater treatment plants. Additionally, if this combined approach is feasible, this 

approach can be applied universally, since wastewater treatment plant is found in all cities and 

municipal waste streams are continuously generated and abundant (Coats et al., 2011).   

 

2.5.1 PHA Production in Sequencing Batch Reactor 

Feast and famine approach is the most promising for high PHA accumulation among the 

treatment systems for industrial production of PHAs.  (Salehizadeh et al., 2004). Feast and famine 

cycles can be divided into two parts, successive periods of substrate availability (feast period) and 
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no external substrate availability (famine period) (Salehizadeh et al., 2004). In municipal 

wastewater treatment plants, the SBR process configuration can allow addition of carbon substrate 

(all at the beginning of a cycle or at different times) and the operations can be manipulated to 

induce feast/famine (Coats et al., 2011).  

Typically, in the operation of a SBR, there are five sequences in a cycle: fill, react, settle, 

decant and idle. Depending on the desired nutrients removal needed, the steps in one cycle can be 

adjusted to provide aerobic, anoxic and anaerobic periods (USEPA, 1992). Sequencing batch 

reactor is widely used for municipal and industrial wastewater treatment in recent decades, because 

of its simple configuration and high removal efficiency of COD and nutrients. In a study covering 

the performance of SBR for 19 plants. BOD removal in SBR ranged from 89-98% and total 

nitrogen percent removals were larger than 75% (USEPA, 1992). The main factors affecting COD 

and nutrients removal efficiency in SBR are hydraulic retention time (HRT), sludge residence time 

(SRT), dissolved oxygen, and C/N ratio. Operation of the SBR can be modified in various ways 

depending on different treatment requirements. Some modifications of the SBR in recent years, 

include continuous flow SBR, and anaerobic-aerobic sequencing batch reactor (Mahvi, 2008). 

 As an effective facility for producing PHB, the amount of PHB accumulation in SBR has 

been investigated using various carbon sources. Many studies used pure cultures with organic 

substrates such as glucose, methanol, ethanol and acetate. These pure cultures have been found to 

produce PHB at a concentration of over 80/% in the biomass (Lee, 1996). Hollender et al. (2002) 

evaluated the effect of acetate, glucose and a combination of acetate and glucose on PHA 

production under anaerobic-aerobic conditions in a 2-liter SBR. The treatment cycle for all 

experiments consisted of a 19.5-hour aerobic phase, followed by a 4-hour anaerobic phase, and a 

0.5-hour period for settling. The organic substrate was added 10 min after the anaerobic process 
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began. The highest phosphate release (27 mg-P/L) and PHA storage (20 mg-C/g dry matter (DM)) 

during the anaerobic phase as well as the highest polyphosphate (8 mg-P/g DM) and glycogen 

storage (17 mg-C/g DM) during the aerobic phase were observed with acetate on the carbon source.  

Levantesi et al. (2002) investigated PHA production in SBR by feeding with a mixture of 

volatile fatty acids (VFAs) consisting of acetate, propionate, butyrate and glycogen. The PHA 

accumulation reached 23% (wt./wt.) for a 2 hour anaerobic and 4 hour aerobic sequence over a 6-

hour cycle. 

Lemos et al. (1998) investigated the PHA accumulation using VFA as a carbon source in 

an SBR for with an 8 hour cycle. Each cycle comprised of an anaerobic (2 hour), aerobic (4 hour), 

settling (1 hour) and fill (1hour). PHA production in SBR was as high as 12% (wt./wt.). 

 Industrial and municipal wastewaters are relatively low cost carbon sources for PHA 

production. Coats et al. (2011) found that 0.23-0.31 mg PHA per mg of biomass per mg COD was 

obtained using primary solids fermenter liquor in an SBR. The SBR used has a volume of 15 L 

and was operated over a 24-hour cycle. Based on this study, they estimated that an SBR treating a 

flowrate of 1 million gallon per day could generate 11-36 metric tons of PHA annually. The 

proposed SBR system could generate a gross annual revenue of approximately $110,000-

$360,000.  

Chua et al. (2003) investigated the effect of pH, SRT, and acetate concentration on PHB 

storage in the biomass using municipal wastewater as the base wastewater. The SBRs were 

operated with a cycle of 4-hour consisting: supernatant decanting (15 min), influent feeding (5 

min), anaerobic (1 hour), aerobic (2 hour) and settling period (40 min). Municipal wastewater 

supplemented with acetate could accumulate PHA up to 30% of sludge dry weight. Additionally, 
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pH in influent kept at 8-9 can favor PHA production. Coats et al. (2007) showed that PHA storage 

can be as high as 53% (wt./wt.) in the aerobic tank with fermenter liquor as the carbon source. 

 

2.5.2 Influence of Additional Carbon Source on PHB Production 

Using low-cost carbon sources is a logical approach to reduce the cost of PHB production. 

Many researchers have focused on PHA storage using acetate, VFA and glucose as additional 

carbon sources. Work done has indicated that these materials, especially acetate, are suitable for 

producing PHB. Other researchers have used high carbon content waste streams, such as cane 

molasses, cooking oil and corn stillage, to produce PHA. PHA production using these materials is 

promising, which can reach up to 43% dry weight and 36% dry weight using sugar cane molasses 

and waste cooking oil respectively (Wu et al., 2001; Haba et al., 2007;). Eskicioglu et al. (2011) 

found that VFA concentration can be over 5000 mg/L in the liquor of thermophilic digestion of corn 

stillage. With a high source of VFA content, fermented corn stillage can be a valuable source for PHB 

production. However, the high content of total nitrogen and phosphorus may have a negative effect 

and may lower PHB storage. Research on using fermented corn stillage for PHB production has not 

been conducted. 

 

2.5.3 PHB Extraction  

The method for PHB extraction is equally important in obtaining high PHB yields. Some 

recovery methods may result in the degradation of PHB reducing the yield of PHB. Over half of 

the production cost of PHB is associated with the recovery and purification of PHB. Typically, 

PHB is extracted in three steps. Firstly, cells need to be disrupted by using chemicals such as 

sodium hypochlorite, or by using a physical method such as passing cell suspensions through a 

two-stage homogenizer. PHB is then extracted with organic solvents to separate from the non-
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PHB materials. The third step is separation of PHB from the solvent by solvent evaporation or 

precipitation in a non-solvent. To enhance PHB recovery, scientists have investigated the most 

appropriate method for each step of the extraction procedure.  

 

Table 2.1 PHB recovery method and results 

  Method Temperature Time Yield Purity References 

Disruption 

Wash with 

deionized water 

and stored at -

20℃ 

-- -- -- -- 

Fiorese et al., 

2009 
Extraction Chloroform 60 ℃  2 hr (stirring) -- -- 

Separation 
Solvent 

evaporation 
-- -- 94% 98% 

Disruption 

Wash with 

deionized water 

and stored at -

20℃ 

-- -- -- -- 

Fiorese et al., 

2009 

Extraction 
1,2 propylene 

carbonate 
130 ºC  

30 min 

(condenser 

and stirring) 

-- -- 

Separation acetone 20 ºC  24 hr 95% 84% 

Disruption 
Sodium 

hypochlorite 
37 ºC  1 hr -- -- 

Sayyed et al., 

2009 
Extraction Hot chloroform 

100 ºC – 

145 ºC 
-- -- -- 

Separation 
Ethanol and 

acetone (1:1 v/v) 
-- -- 

5.6g/l 

(100%) 
-- 

Extraction 

Sodium 

hypochlorite 

(30% v/v) and 

chloroform (1:1) 

40 ºC  
90 min 

(stirring) 
-- -- Ghatnekar et 

al., 2002 

Separation hexane -- -- 95% 97% 

 

Table 2.1 shows the details and results of these PHB recovery methods. Fiorese et al. (2009) 

extracted PHB with chloroform and followed by solvent evaporation to recover the PHB. The 

results showed a PHB yield of 94% and a purity of 98%. The molecular weight of the extracted 

PHB was around 1.0×106. In their research, they also extracted PHB using 1,2 propylene carbonate 

followed by separation using acetone. The advantages of using 1,2-propylene carbonate are its 

higher boiling point, its reuse over several times without purification, and its low toxicity (Fiorese 
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et al., 2009). Using this method, a yield of  95% and a purity of 84% were obtained. The polymer 

obtained was characterized to have a molecular weight of 7.4×105 and a polydispersity of 3.1. 

Sayyed et al. (2009) used chloroform to do the extraction, but used ethanol and acetone (1:1 v/v) 

to do the separation. With this method, a yield of almost 100% was achieved. Chloroform extracted 

PHB can also be separated by hexane. Ghatnekar et al. (2002) used this method to recover PHB 

from Methylobacterium Sp V49 and obtained a yield of 95% and purity of 97%.  

Most of the researchers showed that PHA production with municipal wastewater is 

industrially feasible. However to make this technology more economical, further research is 

needed with a focus on increasing the production of PHA and reducing the cost of raw material.  

 

2.6 Conclusion and Further Study 

This chapter reviewed the resource recovery in municipal wastewater treatment plants. 

Based on the work of others, some approaches have proven to be effective and feasible to recover 

useful products. But some approaches still need to be improved before they can be put into practice.  

Nutrient and carbon recovery are important parts of a sustainable wastewater treatment 

system. Resource recovery from wastewater can contribute to be improved treated wastewater 

quality as well as alleviate the pressure of resource shortage. Full-scale plants have shown 

promising results of phosphorus and nitrogen recycling from wastewaters. Carbon recovery from 

wastewater helps to decrease the emission of carbon dioxide and methane into the atmosphere. 

Meanwhile, PHB production from wastewater will bring further benefits in providing raw 

materials for the production of biopolymers. 

Thus far, nutrient and carbon recovery technologies other than methane are not widely 

used, since they are not economically feasible. As the price of crude oil increases further and the 
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total amount available depletes rapidly, industrial production of biopolymer needs to be realized 

as quickly as possible. Sequencing batch reactor shows that it is effective for PHBs production, 

since SBR can induce feast and famine conditions. Although there are many results showing 

nutrients removal and PHB production in sequencing batch reactor, there are not much research 

on optimizing both wastewater treatment and PHB production by modifying operational strategies 

in an SBR. 

Carbon source is the main cost of PHB production. Using low cost carbon sources have 

not been fully investigated. Municipal wastewater as a common and low cost carbon sources may 

be suitable for PHB production. However, since the carbon content in municipal wastewater is 

low, to produce biomass with high PHB content, additional carbon source may be needed. Low 

cost carbon sources, such as industrial wastewaters, corn stillage and waste cooking oil, can be 

used as additional carbon source. But these sources may have negative impact on the final effluent, 

further investigations are needed. 

Moreover, recovering phosphorus and producing PHB simultaneously in biological 

nutrient removal wastewater treatment plants is theoretically feasible. PHB production is part of a 

biological phosphorus removal process. Thus, if these two resources can be extracted at the same 

time, achieving a sustainable wastewater treatment system may be possible.  
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CHAPTER 3. IMPACT OF OPERATIONAL STRATEGIES AND CARBON SOURCES ON 

POLY-HYDROXYBUTYRATE (PHB) ACCUMULATION AND NUTRIENT REMOVAL IN 

SEQUENCING BATCH REACTOR 

 

Abstract 

To make wastewater treatment plants more sustainable, one of the approaches is to recover 

nutrients and carbon from the wastewater. Since many treatment facilities are implementing 

biological nutrient removal system, poly-hydroxybutyrate (PHB) a biopolymer, which is 

synthesized in phosphorus accumulating organisms, can be recovered and harvested as an useful 

product. However the carbon in municipal wastewater is low in the range of 100 - 200 mg-C/L, 

which may be insufficient for significant PHB accumulation in the biomass. The objectives of the 

study were to evaluate the feasibility of combining wastewater treatment and PHB production in 

a sequencing batch reactor by adding various carbon sources. Three operational conditions, where 

the react phase of a 6-hour cycle was divided into anaerobic and aerobic sequences, were 

investigated to maximize PHB accumulation and wastewater treatment. Results showed that 

dividing the react cycle into two rounds of 45 minutes anaerobic period followed by a 2 hour 

aerobic period each and adding 1200 mg-C/cycle acetate gave PHB content of 37.4±4.1%. 

Acceptable wastewater treatment effluent quality was achieved in all three operational conditions. 

Addition of 800 mg-C/cycle (as in volatile fatty acids (VFA)) of fermented Mg(OH)2-precipitated 

corn stillage gave a % PHB concentration of 24.3% (wt./wt.) in the dry biomass and a %TP 

concentration of 8.6% (wt./wt.) in the dry biomass. The results showed that that it is possible to 

recover PHB and phosphorus by using corn stillage as a carbon source and at the same time treat 

municipal wastewater. 
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3.1 Introduction 

Recycle of limited material resources and use of renewable energy are some of the 

strategies in realizing the sustainability of the planet earth. In last two decades, there is a paradigm 

shift in viewing municipal wastewater as a resource rather than a waste product. Municipal 

wastewater contains organic matter and nutrients, such as nitrogen phosphorus and potassium 

(Jenssen et al., 2007). Recovery of nutrients and energy has been practiced for a long time, but 

recovery of useful organic products such as poly-hydroxyalkanoate (PHA) in recent years have 

attracted interest.  

Conventional plastics are mainly derived from petroleum oil. As a raw material for 

numerous products, plastics play an important role in our daily life. The annual world production 

of plastics was over 250 million tons/year in 2011 (PlasticsEurope, 2012). Since petrochemical 

plastics are not biodegradable, disposal of plastic products is a huge problem. Some countries have 

enacted various policies to reduce the use of plastics. A substitute material that is biodegradable is 

needed to replace the conventional plastic polymers made from petroleum oils.  

PHA is a polymer material made naturally in microbial cells. PHAs can be produced by 

renewable organic sources making the manufacturing process a sustainable process. However, the 

cost of producing PHAs is higher than synthesizing plastic polymers from petroleum oil. Research 

indicates that almost 30% of the total PHA production cost is due to the cost of the carbon source 

(Salehizadeh et al., 2004). Municipal wastewater is a possible low-cost source of carbon for the 

synthesis of PHAs. With more stringent regulation for nitrogen and phosphorus discharge, many 

municipal wastewater treatment plants are implementing biological nutrient removal systems to 

treat their wastewater. These treatment plants can be used to produce PHAs and at the same time 

treat the wastewater. However, the carbon content in municipal wastewater is rather dilute (≤ 100 
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mg/L as carbon) and supplemental carbon may need to be added.  

Sequencing batch reactor (SBR) is a widely applied facility for wastewater treatment and 

has proven to be effective in the accumulation of PHAs. The SBR process sequences can be 

manipulated to induce feast/famine for PHA synthesis and allow addition of separate carbon 

sources at different times (Coats et al., 2011). However, there is not much research that focuses on 

combining municipal wastewater treatment with PHA production. If both goals can be achieved, 

it will advance the sustainability of wastewater treatment plants. 

The operational strategy of the SBR is one of the key factors which can affect PHA 

production. To optimize feast and famine process, the SBR sequences can be changed from 

anaerobic to aerobic condition accordingly. However, optimizing the feast/famine sequence may 

have a negative effect on the original purpose of removing COD and nutrients in the wastewater.  

Several researchers have shown that using municipal wastewater as a carbon source cannot 

accumulate sufficient PHA in the biomass. Additional carbon source is needed. Acetate is widely 

used for PHA production. For instance, Chua et al. (2003) found that municipal wastewater 

supplemented with acetate could accumulate PHA up to 30% of sludge dry weight. Liquor from 

the fermented activated sludge has been used with an accumulation of 0.23-0.31 mg PHA per mg 

in biomass per mg COD (Coats et al., 2011).  Corn stillage is another material which can be used 

as a carbon source. But not much work has been done with corn stillage. Eskicioglu et al. (2011) 

found that the VFA concentration can be over 5000 mg/L in the thermophilic digestion process of 

corn stillage. Since corn stillage is a waste product that needs to be disposed of, it can be an 

inexpensive source of carbon. However, the high phosphorus and nitrogen concentration in corn 

stillage may be a big challenge for effective treatment of the municipal wastewater and corn 

stillage. Presence of high total nitrogen may inhibit PHA growth. 
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The goal of this study is to investigate the accumulation of PHB in the biomass in SBR 

treating a synthetic municipal wastewater. To optimize production of poly-hydroxybutyrate 

(PHB), a PHA compound, the operational conditions of the SBR was varied. In addition, different 

external carbon sources were added. The specific objectives of the study are: 

1. Determine the impact of operation strategies on PHB accumulation and wastewater 

treatment by changing the anaerobic/anoxic/aerobic sequences of an SBR. 

2. Determine the impact of adding additional carbon sources with different concentrations 

on PHB accumulation and wastewater treatment. 

 

3.2 Methods and Materials 

3.2.1 Source of biomass and wastewater composition 

Sludge from the aeration tank of a municipal wastewater treatment plant in Boone, IA was 

used as the seed for the SBR. The composition of the synthetic municipal is presented in Table 3.1 

(Brown et al., 2011). The COD of the synthetic wastewater was about 500 mg/L.    

 

3.2.2 Sequencing batch reactor and operational conditions 

The SBR was made of plexi-glass with a working volume of 4 L. The SBR has a diameter 

of 3.5 inches and a water depth of 35 inches. The SBR was operated with a 6 hour cycle and 5 

days SRT at a room temperature of 23°C ± 1°C. The TSS in the reactor was maintained at 

approximately 5,000±500 mg/L throughout the entire experiment. The SBR cycle consisted of 10 

min of fill, 330 min of react and 20 min of decant. To investigate the optimal operational strategies 

for PHB production, three different react phases were investigated by turning the air in and off in 

the SBR. The three different react phases are given in Figure 3.1. In Condition A, the air off 
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(anaerobic) phase was 1.5 hour followed by a 4 hours air on (aerobic) process. In Condition B, the 

anaerobic phase was 45 minutes followed by a 2 hour aerobic period and these two phases were 

repeated. For Condition C, there were three repetition of a 30 minutes anaerobic phase followed 

by an 80 minutes aerobic phase. For all three conditions, the total anaerobic time was 90 minutes 

and the total aerobic time was 4 hour. The purpose of having different anaerobic and aerobic react 

time was to create a feast/famine condition to promote PHA accumulation. The phases of the SBR 

were controlled by ChronTrol controllers (XT4, ChronTrol Corp., San Diego, CA).  Under 

anaerobic condition, the wastewater was recycled from the top to bottom to keep the wastewater 

and sludge mixed. The aerobic condition was maintained by supplying air at a rate of 2.5 L/min. 

For each cycle, 2.5 L supernatant was decanted at the end of the cycle by a peristaltic pump (Model 

No. 7553-20, Cole-Parmer, IL) and approximately 2.5 L of synthetic wastewater and additional 

carbon source were added at the beginning of each cycle and additional carbon source at the start 

of the anaerobic phases as described later.   

 

3.2.3 PHB production batch experiments 

Two additional carbon sources, acetate and fermented corn stillage, were added to 

supplement the carbon of the synthetic municipal wastewater. The additional carbon sources were 

added at the beginning of each anaerobic phase.  
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(a) Condition A 

 

 
      10 min                                              100 min                                                                           340 min            360 min 

(b) Condition B  

 

 
        10 min                  55 min                              175 min                   220 min                            340 min               360 min       

 

(c) Condition C 

 

 

 
       10 min          40 min               120 min        150 min          230 min          260 min                  340 min              360 min       

 

Figure 3.1 Operational conditions for SBR; (a) Condition A; (b) Condition B; (c) Condition C 

 

Table 3.1 Synthetic wastewater composition  

  Chemicals/Parameters Concentration (mg/L) 

Ingredients Calcium sulfate 40 

  Ferric chloride  3 

  Isomil (SimulacTM)  20 mL (1% by volume) 

  Magnesium sulfate  4 

  Nutrient broth  250 

  Potassium chloride  5 

  Sodium bicarbonate  63 

  Sodium biophosphate monobasic 60 

  Sodium citrate  500 

Final 

composition 
COD (mg/L) 489 

 TOC (mg/L) 158 

  Suspended solids (mg/L)  23.4 

  Total nitrogen (mg/L-N)  47.6 

  Nitrate (mg/L-N)  0.3 

  Ammonia (mg/L-N)  24.5 

  Total phosphorus (mg/L – P)  15.8 

  pH  7.25 

  

Fill Anaerobic Aerobic Decant 

Fill Anaerobic Aerobic Anaerobic Aerobic Decant 

Fill Anaerobic Aerobic Aerobic Aerobic Anaerobic Anaerobic Decant 
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Four different amounts of acetate, 400 mg-C/cycle, 800 mg-C/cycle, 1200 mg-C/cycle and 

1600 mg-C/cycle, were added into the SBR. The acetate solution was made by dissolving different 

amount of sodium acetate trihydrate (MW =136.08) in deionized water. In Condition A, the total 

amount of acetate was added once at the beginning of anaerobic phase. In Condition B and C, the 

total amount of acetate was added as two and three equal parts, respectively, at the beginning of 

each anaerobic phase. 

Corn stillage was obtained from Lincolnway Energy, LLC (Nevada, IA). The corn stillage 

was fermented in a digester operating at 35 °C ±2 °C. Two liters of corn stillage and 6 liters of 

activated sludge from a wastewater treatment plant (Boone, IA) were added to the digester. The 

activated sludge used had a total solids concentration of 17,380 mg/L. The contents was fermented 

for 6 days to maximize VFA production. The composition of the corn stillage and the fermented 

corn stillage are presented in Table 3.2. Four different amounts of carbon masses of fermented corn 

stillage (based on VFA concentration which was assumed to be mainly made up of acetate), were 

added to the SBR. The amounts added were 200 mg-C/cycle, 300 mg-C/cycle, 400 mg-C/cycle 

and 500 mg-C/cycle (based on VFA).  

Since the fermented corn stillage contained high concentrations of nitrogen and phosphorus 

which may affect PHB production and the final effluent quality, part of the TN and TP were 

reduced first by precipitation before fermentation. TN and TP were precipitated using magnesium 

hydroxide. Magnesium chloride (112.34g) was dissolved in 200 mL of deionized water and added 

to 4 L of thin corn stillage. The Mg : P ratio was kept at 1.6 : 1 and the pH was maintained at 9 by 

adding 2 N sodium hydroxide solution. After precipitation, the corn stillage was stored for one day 

at 4 °C to allow the solids to settle. Two L of precipitated supernatant were added to digester along 

with 2.5 L of activated sludge to obtain a F/M ratio of 2. The pH of the digester was adjust to 7 by  
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Table 3.2 Composition of corn stillage and fermented corn stillage  

Parameter  Corn stillage  Fermented corn stillage 

COD (mg/L) 105,000 22,000 

TOC (mg/L) 3,5600 7,600 

Volatile Fatty acids (VFA)  (mg/L) 849 1,680 

Suspended Solids (mg/L) 28,900 90 

Total Nitrogen (mg-N/L) 4,100 520 

Nitrate (mg-N/L) 200 320 

Ammonia (mg-N/L) 300 140 

Total phosphorus (mg/L) 2,520 2,140 

pH 5.2 4.8 

 

Table 3.3 Composition of corn stillage, Mg(OH)2-precipitated corn stillage and fermented 

Mg(OH)2-precipitated corn stillage  

 

 

  

Parameter  Corn stillage  

Mg(OH)2-precipitated 

corn stillage 

Fermented corn 

stillage 

COD (mg/L) 89000 52,000 19,000 

TOC (mg/L)  32,300  20,000 10,700  

Volatile Fatty 

acids (VFA) 

(mg/L) 758 732 2,785 

Suspended Solids 

(mg/L) 26,300 100 90 

Total Nitrogen  

(mg-N/L) 4,100 1,100 420 

Nitrate (mg-N/L) 200 5 5.4 

Ammonia (mg-

N/L) 300 190 265 

Total phosphorus 

(mg-P/L) 6,100 1680 900 

pH 5.6 7.2 5.9 
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adding 2 N sodium bicarbonate solution. The digester was operated at 35 °C ± 2 °C and was 

maintained for 6 days before supernatant was withdrawn. Table 3.3 shows the composition of corn 

stillage after precipitation and after digestion. Three different amounts of carbon mass of fermented 

Mg(OH)2-precipitated corn stillage (based on VFA concentration which was assumed to be mainly 

made up of acetate), 200 mg-C/cycle, 400 mg-C/cycle and 800 mg-C/cycle, were added to the 

SBR. 

 

3.2.4 Analysis methods 

COD of samples were measured according to Method 5220 of the Standard Methods 

(APHA, 2005). Total nitrogen (TN), total phosphorus (TP), ammonia and nitrate concentrations 

were measured using HACH test kits (Loveland, CO). The HACH test method numbers are given 

in Table 3.4. The total phosphorus in the biomass of the SBR was measured using the sulfuric acid-

nitric acid digestion method combined with vanadomolybdophosphoric acid colorimetric method 

(Method 4500-P, C) of the Standard Methods (APHA, 2005). The VFA concentrations of corn 

stillage and fermented corn stillage were determined by the distillation method (Method 5560, C) 

of the Standard Methods (APHA, 2005). pH of the wastewater was measured using an Orion 

9207BN pH/ATC Triode (Thermo Scientific, Waltham, MA). Total organic carbon was measured 

by a Shimadzu TOC-Vws TOC Analyzer (Shimadzu Scientific Instrument, Columbia, MD).  

PHB content was measured by a gas chromatograph mass spectrometer (GC). 

Approximately 30 mL of biomass was collected from the SBR at a specific time and centrifuged. 

Approximately 5 mL of the centrifuged biomass was transferred and frozen in a 5 mL vial. The 

frozen samples were freeze-dried by a freeze-dry machine (Model FD-3-54, SP Scientific, Stone 

Ridge, NY) at 2000 millitorr and -40 °C for at least 12 hours. Ten mg of each dried samples was 
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measured and transferred to a 10 mL tube. Two mL of 3% acidified methanol and two mL of 

chloroform were added and the vials sealed and heated at 105 °C for 2 hours to digest and extract 

the PHB in the dried biomass. Poly [R-3-hydroxybutyric acid] was used as a standard by using the 

same preparation method. After digestion and extraction, 5 mL deionized water was added to each 

tube. The tube were mixed vigorously and centrifuged for 10 minutes at 2000 rpm. After 

centrifuging, PHB was dissolved in 2 mL of chloroform. Approximately 1 mL of the dense 

chloroform was transferred to 1.5 mL GC vials and further diluted with chloroform if necessary. 

PHB were measured using an Agilent 7890A gas chromatograph mass spectrometer (GC-MS) with 

a 5975C MSD detector (Aglient Technologies, Santa Clara, CA) by injecting 1 µL samples into 

the GC. The gas chromatograph was equipped with a HP-5ms column, 30 m (length) × 0.25 mm 

(diameter) × 0.25 µm (film), (Aglient Technologies, Santa Clara, CA). The GC analytical run took 

18.1 minutes. The start temperature was 45 °C for 2 min, then raised at 5 °C/min to 65 °C, holding 

for 4 min, followed by a ramp of 50 °C/min to 320 °C, and then holding for 3 min.  

 

Table 3.4 Hach methods used 

Regent Hach Method Number 

Total Phosphorus (TP) 10127 

Total Nitrogen (TN) 10072 

Ammonia Nitrogen (NH3-N) 10031 

Nitrate Nitrogen (NO3-N) 10020 
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3.3 Results and Discussions 

3.3.1 Impact of different operational conditions on PHB accumulation 

Using synthetic municipal wastewater only, the COD and nutrient removal and PHB 

accumulation in the biomass for three operational conditions are provided in Table 3.5. The results 

showed that for all three operational conditions, the average COD removal efficiencies were 

greater than 94% and were statistically similar. The effluent TN, ammonia and TP concentration 

were less than 3 mg/L, 1.3 mg/L as N and 2 mg/L as P, respectively, for all three operational 

conditions. Conditional B appeared to show the highest percent of ammonia and TP removal. In 

addition, PHB in the biomass was the highest for Condition B. All three conditions showed that 

the SBR can achieve TN concentration of less than 10 mg/L as N but not a TP concentration of 1 

mg/L as P as typically required of a wastewater treatment plant with a permit limit of 10 mg/as N 

and 1 mg/L as P. 

 

Table 3.5 Nutrient removal and PHB accumulation under different operational conditions with 

synthetic municipal wastewater only 

 

  

Condition 

A Condition B Condition C 

PHB in biomass (% d.w) 0.43% 1.16% 0.81% 

Average effluent COD (mg/L) 13±2 19±2 20±5.5 

Average COD removal efficiency (%) 96.1±0.6 94.3±0.6 94.1±1.5 

Average effluent TN (mg/L as N) 2.73±0.15 2.21±0.12 3±0.29 

Average TN removal efficiency (%) 80.2±2.6 84.1±2.9 78.4±3.1 

Average effluent ammonia (mg/L as N) 1.23±0.15 0.6±0.2 1.1±0.21 

Average ammonia removal efficiency (%) 73.9±1.9 87.6±4.3 76.8±5.2 

Average effluent TP (mg/L as P) 1.63±0.12 1.33±0.15 1.78±0.1 

Average TP removal efficiency (%) 78.2±1.1 82.2±2.1 76.3±1.5 
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The results also showed that using municipal wastewater only, the SBR cannot accumulate 

a high percent of PHB in the biomass because of the low carbon content of the wastewater.  

 

3.3.2 Impact of acetate addition on PHB storage 

The percent of PHB in the biomass for the synthetic wastewater and acetate addition for 

three operational conditions are shown in Figure 3.2. All three operational conditions showed that 

increasing the concentration of acetate resulted in an increase in the percent of PHB in the biomass. 

Condition A and Condition C showed a linear increase in the percent of PHB for an increase in 

acetate concentration. The highest PHB percent achieved was for 1600 mg-C/cycle of acetate at 

28.2%±0.2% and 31.9%±1.1% for Condition A and Condition C, respectively. Condition B was 

the best operational condition of three conditions tested. For an acetate concentration of 400 mg-

C/cycle, the % PHB in the biomass was 14.6%±1.3% which was significantly different and higher 

than the % PHB for Condition A and Condition C. The highest % PHB were 37.4%±4.1% and 

32.9%±2.1% for 1200 mg-C/cycle acetate and 1600 mg-C/cycle acetate, respectively. An acetate 

concentration of 1600 mg-C/cycle did not further enhance the % PHB in the biomass. This may 

indicate that the PHB accumulation in the biomass may have reached its limits. Repeat of two sets 

of experimental runs (as shown in Figure 3.2) after about 2 months later showed that the results of 

PHB accumulation were reproducible.  

Chua et al. (2003) obtained PHB content of 30% in the biomass (dry weight) with 30 mg/L 

acetate addition and up to 20% of biomass (dry weight) with municipal wastewater only in an 

anaerobic/aerobic SBR. Coats et al. (2011) obtained 12.5% to 28.7% PHB using primary solids 

fermenter liquor in an SBR. These experiments obtained similar PHB content as in this experiment. 

Coats et al. (2007) also showed that PHA storage can be as high as 53% (wt./wt.) in the aerobic 
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tank with fermenter liquor as the carbon source. The higher PHA percent in the biomass in the 

Coats et al. experiments may be due to the higher F/M ratio (approximately 0.75) in their 

experiments. In our experiment, the highest F/M ratio was approximately 0.13 for the 1200 mg-

C/cycle acetate addition for Condition B. Condition B most probably provided the better anaerobic 

and aerobic sequence times for the amount of carbon added to maximize the feast and famine 

process to accumulate PHBs. Feast and famine cycling can be divided into two parts, successive 

periods of substrate availability (feast period and no external substrate availability (famine period) 

(Salehizadeh et al., 2004). In Condition B, the anaerobic sequence of 45 minutes provided adequate 

time for PAOs to uptake the carbon and convert to PHB. The aerobic sequence of two hours was 

sufficient to avoid extra PHB consumption allowing the PHB to build up within the biomass. 

Additionally, dividing the feeding of additional carbon into two times may optimize the feast and 

famine process.  

Condition A may not be ideal due to the long aerobic time which consumed PHB stored to 

accumulate phosphorus. Moreover, adding all the carbon source at one time at the start of the cycle 

may not allow the biomass to uptake all the carbon during the 1.5 hour anaerobic period. 

For 1600 mg-C/cycle acetate addition, the % PHB in the biomass were statistically similar 

for all three operational conditions. Without occurring extra costs of providing acetate, Condition 

B with 800 mg-C/cycle of acetate appeared to be appropriate for optimizing PHB accumulation in 

SBR treating municipal wastewater. 
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Figure 3.2 Impact of addition of acetate on PHB production for three operational conditions (TOC 

for municipal wastewater added per cycle was 378±33 mg-C)  

 

3.3.3 Impact of acetate addition on wastewater effluent quality 

Figure 3.3 provides the COD, TN and TP concentrations after treatment for all three 

conditions with different amounts of acetate added. For COD removal, Condition A shows the best 

effluent concentration. Average COD percent removal ranged from 95.9% to 97.9%, 96.2% to 97.4% 

and 96.3% to 97.0% for Condition A, Condition B and Condition C respectively for different 

amounts of acetate added. A probable reason for the better performance of COD removal for 

Condition A was the longer aerobic sequence time.  

All the conditions showed good performance for TP removal with TP concentration less 

than 1.5 mg/L as P. In fact addition of acetate, gave better TP removal than the removal for 

synthetic municipal wastewater alone. For all conditions, the % TP removals ranged from 85.3% 

to 96%, which were higher than TP removals without additional carbon added (ranged from 76.3%  
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Figure 3.3 Impact of addition of acetate on wastewater treatment, (a) COD concentration in 

effluent, (b) TP concentration in effluent, (c) TN concentration in effluent (TOC for municipal 

wastewater added per cycle was 378±33 mg-C)   
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to 82.2%). The highest TP percent removal (96%) was for Condition B with 1600 mg-C/cycle 

acetate added, which was in line with optimizing PHB accumulation.  

Figure 3.3 (c) shows the total nitrogen concentration in the effluent. Condition B gave the 

highest TN percent removal at 90.4% with 1600 mg-C/cycle of acetate added to the reactor. TN 

percent removal for Condition C changed from 85.6% to 72.4% when the amount of acetate added 

increased. Overall, addition of acetate did not affect the effluent concentration of TN and TP except 

for COD. This shows that addition of acetate will not affect the treatment of municipal wastewater 

except for an increase in COD concentration, which was acceptable if 800 mg-C/cycle of acetate 

was used for operational Condition B.  

The total phosphorus in the biomass was found to be 4.4%±1.2% (dry weight) for 1200 

mg-C acetate addition in Condition B. The results confirmed phosphorus uptake in the biomass 

which can be recovered along with PHB.  

In general, with the right amount of acetate added the final COD concentration in the 

effluent can be within acceptable effluent discharge limits. Additional acetate also enhanced TP 

removal. Considering TN and TP removal and PHB accumulation, Condition B appeared to show 

the best results. 

 

3.3.4 Concentration Profiles for Condition B 

Figure 3.4 shows the concentration profiles of PHB, TP, COD, TN, ammonia and nitrate of 

Condition B with 1200 mg-C/cycle acetate added. For the first anaerobic condition just after the 

fill sequence, COD concentration decreased with time and % PHB in the biomass increased to as 

high as 37% with release of phosphorus as indicated by an increase in TP in solution (as high as 

20 mg/L). For the first aerobic sequence after the anaerobic sequence, TP in solution decreased to 
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about 5 mg/L indicating uptake of phosphorus by the biomass. At the same time, the % PHB in the 

biomass decreased accordingly along with the COD in the wastewater solution. When more acetate 

was added in the second anaerobic sequence, the COD increased accordingly and during the 

anaerobic sequence, % PHB increased. While the TP was released as shown by the increase in TP 

in solution for the second aerobic sequence, the change in % PHB in the biomass was not as steep 

as in the first aerobic sequence. This may be due to the TP concentration in solution which was 

about one third of the concentration at the start of the cycle. TN and ammonia showed a large 

change in the aerobic sequence as compared to the anaerobic sequence. Nitrate was shown to 

increase in the aerobic sequences which was due to nitrification.     
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Figure 3.4 Concentration profiles for Condition B with the addition 1200 mg-C/cycle acetate (2.5 

L of synthetic wastewater added during fill; 120 mL of acetate added at the start of each of the 

anaerobic sequence) 
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3.3.5 Impact of fermented corn stillage added on PHB storage and effluent quality 

Figure 3.5 shows the % PHB in the biomass by adding fermented corn stillage and 

fermented Mg(OH)2-precipitated corn stillage. Operational condition for the tests was Condition 

B. The average PHBs in the biomass were 7.5%, 12.7% and 24.3% of dry weight for the addition 

of 200 mg-C/cycle, 400 mg-C/cycle and 800 mg-C/cycle (based on VFA concentration) 

respectively of fermented Mg(OH)2-precipitated corn stillage. For fermented corn stillage, the % 

PHBs were 7.3% and 9.7% for the addition of 200 mg-C/cycle and 400 mg-C/cycle (based on VFA 

concentration), respectively. The results showed use of fermented Mg(OH)2-precipitated corn 

stillage performed slightly better than fermented corn stillage. One possible reason is that 

fermented Mg(OH)2-precipitated corn stillage had higher VFA concentration and lower TN and 

TP concentration. Precipitation of corn stillage removed part of large molecular weight carbon 

compounds, making it easier to ferment the stillage. In comparison with the same amount of 

acetate-C (Figure 3.2), the % PHB in the biomass using fermented Mg(OH)2-precipitated corn 

stillage was lower by about 5%. This may be due to the higher nitrogen concentration in the 

fermented Mg(OH)2-precipitated corn stillage which may inhibited PHB storage. 

COD concentration in the effluent (Figure 3.6) was as high as 96 mg/L and 145 mg/L for 

an addition of 200 mg-C/cycle fermented Mg(OH)2-precipitated corn stillage and 200 mg-C/cycle 

fermented corn stillage, respectively. The COD concentration increased with the amount of 

fermented corn stillage added. When 800 mg-C/L fermented Mg(OH)2-precipitated corn stillage 

was added, COD concentration in the effluent reached 310 mg/L.  

TP concentrations in the effluent were 91.7 mg/L and 10.4 mg/L for the addition of 400 

mg-C/cycle for fermented corn stillage and fermented Mg(OH)2-precipitated corn stillage, 

respectively (Figure 3.7a). Precipitation of phosphorus in corn stillage before fermentation 
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effectively reduced the additional phosphorus concentration supplied into reactor, which resulted 

in a lower TP concentration in the effluent.  

The higher total phosphorus in the fermented corn stillage resulted in higher phosphorus 

percent concentrations in the biomass, i.e., 6.5%, 7.0% and 8.6% for 200 mg-C/cycle, 400 mg-

C/cycle and 800 mg-C/cycle fermented Mg(OH)2-precipitated corn stillage, respectively. Since the 

TP concentration in fermented corn stillage was higher, TP concentration in the biomass was as 

high as 8.9% for 400 mg-C/cycle of fermented corn stillage added. The phosphorus in biomass can 

be recovered, making the wastewater treatment plants more sustainable. 

Total nitrogen concentrations in the effluent were high at concentrations of 9.3 mg/L and 

9.5 mg/L for the addition of 400 mg-C/cycle of fermented corn stillage and fermented Mg(OH)2-

precipitated corn stillage, respectively (Figure 3.7b). For an addition of 800 mg-C/cycle of 

fermented Mg(OH)2-precipitated corn stillage, the TN concentration was as high as 19.2 mg/L.  

Since corn stillage need to be disposed of, fermented corn stillage can be a good carbon 

resource for PHB production in municipal wastewater treatment plants. The relatively low cost of 

corn stillage may be feasible as an additional carbon source. However, the final effluent quality 

may be impacted by the addition of corn stillage and a secondary treatment unit may be needed to 

further treat the wastewater. 
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Figure 3.5 Impact of addition of fermented corn stillage on PHB production in Condition B 

 

 

Figure 3.6 Impact of addition of fermented corn stillage on COD removal in Condition B 
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Figure 3.7 Impact of addition of fermented corn stillage on TP and TN removal in Condition B, 

(a) TP concentration in effluent, (b) TN concentration in effluent  

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

TOC (mg-C/cycle)
TP

 (
m

g/
L)

VFA concentration (mg-C/cycle)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

5

10

15

20

25

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900

TOC (mg-C/cycle)

TN
 (

m
g/

L)

VFA concentration (mg-C/cycle)

(a) TP concentration in effluent 

(b) TN concentration in effluent 

∆ Fermented Mg(OH)2-precipitated 

Corn Stillage 
□ Fermented Corn Stillage  

∆ Fermented Mg(OH)2-precipitated 

Corn Stillage 
□ Fermented Corn Stillage  



www.manaraa.com

46 

 

3.4 Conclusion 

Operational Condition B, where the react phase of 330 minutes was divided into two rounds 

of 45 minutes anaerobic sequence and 2 hour aerobic sequence each, gave the better % PHB 

content in the biomass. Percent PHB achieved within this condition was 37.4%±4.1% with the 

addition of 1,200 mg-C of acetate per cycle. With the addition of acetate, nutrient removal 

improved for the treatment of municipal wastewater for all three operational conditions. 

Fermented corn stillage with a high VFA concentration was used as an additional carbon 

source. The highest % PHB in the biomass obtained was 24.3% of biomass (dry weight) with the 

addition of 800 mg-C/cycle of fermented Mg(OH)2-precipitated corn stillage. At the same time 

the %TP content in the biomass was 8.2% for the addition of 800 mg-C/cycle fermented Mg(OH)2-

precipitated corn stillage and 8.9% for the addition of 400 mg-C/cycle fermented corn stillage. 

These results showed the possibility of recovering both PHB and phosphorus together from the 

wastewater treatment process. However, using corn stillage resulted in high TN, TP and COD 

concentration in the effluent. Removing part of phosphorus and COD before fermentation by 

precipitation with magnesium hydroxide was an effective way in reducing the TP and TN 

concentrations in the corn stillage. 

In summary, PHB production combined with municipal wastewater treatment in a 

sequencing batch reactor is possible with the addition of a carbon source such as industrial 

wastewaters. This approach can make the wastewater treatment process more sustainable.   
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CHAPTER 4. GENERAL CONCLUSION 

 

4.1 Conclusion 

 

Recovery of nutrients and carbon from wastewater has been regarded as a promising 

approach to realize the sustainability of municipal wastewater treatment plants. PHB is a 

biopolymer that can be produced by phosphorus accumulating organisms. Municipal wastewater, 

as a cheap carbon source can be used to produce PHB. However, due to the limited carbon 

concentration in municipal wastewater, addition of other carbon sources may be needed to achieve 

sufficient % PHB in the biomass. To maximize the % PHB accumulation, wastewater treatment 

operational condition must be optimized. In this research, the possibility of combining municipal 

wastewater treatment and PHB production with various operational conditions and the addition of 

carbon sources in sequencing batch reactor (SBR) was investigated. In Chapter 3, the results 

showed that Condition B, where the react phase was divided into two rounds of 45 minutes 

anaerobic period and 2 hours aerobic period each gave % PHB concentration of 37.4%±4.1%, with 

the addition of 1200 mg-C/cycle of acetate.  

Using fermented corn stillage as additional carbon source, the % PHB content in the 

biomass was found to be lower than that with the same carbon amount of acetate. The % PHB 

content achieved was 24.3% of biomass (dry weight) with the addition of 800 mg-C/cycle 

fermented Mg(OH)2-precipitated corn stillage. Additionally, the high COD, TN and TP 

concentration in fermented corn stillage resulted in high TP, TN and COD concentration in final 

effluent. This can be partially solved by precipitating TP and TN before fermenting the corn stillage. 

The results showed that after precipitation with Mg(OH)2, 72.2% total phosphorus and 73.12% 

nitrogen were removed from corn stillage. The fermented corn stillage also resulted in % TP 

concentration of 8.2% for the addition of 800 mg-C/cycle fermented Mg(OH)2-precipitated corn 
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stillage and 8.9% TP for addition of 400 mg-C/cycle fermented corn stillage. Fermented corn 

stillage appeared to be a suitable carbon source for production of PHB and recovery of phosphorus. 

In conclusion, it is possible to realize sustainable wastewater treatment by recovering PHB 

for municipal wastewater treatment process in sequencing batch reactor when an additional carbon 

source such as corn stillage is added.  

 

4.2 Future Studies 

This study shows it is possible to combine PHB recovery and municipal wastewater treatment 

together. To make the whole process more efficient and feasible, some further studies are needed. 

They are: 

1. The PHB content in the biomass achieved in this study may not be high enough to reduce 

the cost of PHB production. Some further studies can focus on increasing the PHB in 

municipal wastewater treatment plants with less carbon source added but further fine-

tuning the operational conditions 

2. Use of corn stillage showed the possibility of recovering phosphorus and PHB together in 

municipal wastewater treatment systems. Future studies can investigate use of corn stillage 

more efficiently for PHB production and to avoid high TP, TN and COD concentration in 

effluent. 

3. Further explore and find a carbon source to reduce the cost of PHB.   
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APPPENDIX A. EXPERIMENTAL DATA FOR ALL TREATMENT CONDITIONS 

WITHOUT ADDITIONAL CARBON SOURCE 

 

Table A.1 Concentrations for Condition A (for Table 3.5) 

 

 10 min 55 min 100 min  160 min 220 min 280 min 340 min 

pH 7.1±0.2      7.3±0.2 

TSS (mg/L) 4661±200 

COD (mg/L) 318      11.0 

 350 188 164 36 26 12 13.0 

 326           15.0  

Average COD (mg/L) 331            13.0  

TP (mg/L) 7.9           1.7  

 7.2 8.9 14.3 22.1 4.2 2.2 1.5  

 7.4           1.7  

Average TP (mg/L) 7.5           1.6  

TN (mg-N/L) 15.2           2.6  

 12.1 7.1 7.5 3.6 2.3 2.8 2.7  

 14.3           2.9  

Average TN  

(mg-N/L) 13.9            2.7  

Ammonia (mg-N/L) 4.5           1.2  

 5.1 5.7 5.3 3.1 1.7 1.4 1.4  

 4.6           1.1  

Average Ammonia 

(mg-N/L) 4.73            1.2  

Nitrate (mg-N/L) 0.40            0.2 

 0.50            0.3  

 0.30            0.3  

Average Nitrate  

(mg-N/L) 0.40            0.27  

PHB (w/w %)   0.90%  1.23%     0.73%   0.43% 
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Table A.2 Concentrations for Condition B (for Table 3.5) 

 

  10 min 55 min 115 min 175 min 220 min 280 min 340 min 

pH 7.2±0.1      7.3±0.1 

TSS (mg/L) 4624±130 

COD (mg/L) 318 243 47 36 25 22 17.0 

  350           19.0  

  326           21.0  

Average COD (mg/L) 331            19.0  

TP (mg/L) 7.9 11.7 2.7 2.8 3.2 1.8 1.3  

  7.2           1.2  

  7.4           1.5  

Average TP (mg/L) 7.5           1.3  

TN (mg-N/L) 15.2 6.5 2.9 2.5 2.2 2.3 2.2  

  12.1           2.4  

  14.3           2.2  

Average TN (mg-N/L) 13.9            2.3 

Ammonia (mg-N/L) 4.5 6.1 2.4 1.9 1 0.4 0.2  

  5.1           0.4  

  4.6           0.6  

Average Ammonia 

(mg-N/L) 3.23            0.4  

Nitrate (mg-N/L) 0.40            0.1  

  0.50            0.2  

  0.30            0.1  

Average Nitrate  

(mg-N/L) 0.40            0.13  

PHB (w/w %)   0.97%   1.03% 1.62%   1.16% 
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Table A.3 Concentrations for Condition C (for Table 3.5) 

 

  10 min 40 min 120 min 150 min 230 min 260 min 340 min 

pH 7.2±0.1      7.3±0.1 

TSS ( mg/L) 4681±150 

COD (mg/L) 318 260 52 56 36 49 20.0 

  350           25.0  

  326           14.0  

Average COD (mg/L) 331            20.0  

TP (mg/L) 7.9 10.1 4.2 2.2 1.2 2.5 1.8  

  7.2           1.7  

  7.4           1.9  

Average TP (mg/L) 7.5           1.8  

TN (mg-N/L) 15.2 6.7 4 3.1 2.5 3.3 2.2  

  12.1           2.4  

  14.3           1.7  

Average TN (mg-N/L) 13.9            2.0 

Ammonia (mg-N/L) 4.5 4.7 3 2.5 0.8 1.7 0.9  

  5.1           0.5  

  4.6           0.6  

Average Ammonia 

(mg-N/L) 4.73   00         1.1  

Nitrate (mg-N/L) 0.40            0.2  

  0.50            0.3  

  0.30            0.2  

Average Nitrate  

(mg-N/L) 0.40            0.23  

PHB (w/w %)   1.24% 0.99% 1.37% 1.14% 1.21% 0.81% 

 

 

Table A.4 PHB concentrations for Condition A, Condition B and Condition C 
 

Condition A 

Time 10 min 55 min 100 min  160 min 220 min 280 min 340 min 

PHB (w/w%)   0.90%  1.23%     0.73%   0.43% 

Condition B 

Time 10 min 55 min 115 min 175 min 220 min 280 min 340 min 

PHB (w/w%)   0.97%   1.03% 1.62%   1.16% 

Condition C 

Time 10 min 40 min 120 min 150 min 230 min 260 min 340 min 

PHB (w/w%)   1.24% 0.99% 1.37% 1.14% 1.21% 0.81% 
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APPPENDIX B. EXPERIMENTAL DATA FOR ALL TREATMENT CONDITIONS 

WITH ACETATE ADDITION 

 

Table B.1 PHB and nutrients concentration in effluent with acetate addition for Condition A (for 

Figures 3.2 and 3.3) 

 
Acetate  

(mg-C/ cycle) 
0 400 800 1200 1600 

TSS (mg/L)  4939±110 5110±90 5310±100 5520±150 

PHB content 

(%) 
0.43% 8.41%±1.14% 15.16%±0.43% 21.09%±1.18% 28.18%±0.85% 

TN (mg/L) 2.73±0.15 2.40±0.15 2.97±0.47 2.50±0.26 2.90±0.57 

TP (mg/L) 1.63±0.12 0.67±0.15 0.67±0.06 0.77±0.38 0.73±0.06 

Ammonia  

(mg-N/L) 
1.23±0.15 0.87±0.06 0.77±0.15 0.73±0.06 0.67±0.15 

Nitrate  

(mg-N/L) 
0.27±0.06 0.33±0.06 0.70±0.17 0.77±0.25 0.87±0.06 

COD (mg/L) 13±2 29±8 41±4 40±1 45±10 

 

 

Table B.2 PHB and nutrients concentration in effluent with acetate addition for Condition B (for 

Figures 3.2 and 3.3) 

 
Acetate  

(mg-C per time) 
0 200 400 600 800 

Acetate  

(mg-C/cycle) 
0 400 800 1200 1600 

TSS (mg/L)  4810±80 5042±100 5213±110 5589±80 

PHB content 

(%) 
1.16% 14.59%±1.27% 28.60%±0.53% 

37.36%±4.09%  

34.48%±1.01% 

29.28%±1.79% 

32.85%±2.09% 

TN (mg/L) 2.27±0.12 2.20±0.17 1.77±0.6 1.37±0.15 1.33±0.15 

TP (mg/L) 1.33±0.15 1.13±0.21 0.70±0.44 0.57±0.21 0.30±0.2 

Ammonia  

(mg-N/L) 
1.0±0.2 0.87±0.15 0.5±0.26 0.37±0.12 0.33±0.15 

Nitrate  

(mg-N/L) 
0.13±0.06 0.23±0.06 0.23±0.06 0.27±0.06 0.33±0.06 

COD (mg/L) 19±2 18±3 35±4 47±10 78±6 
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Table B.3 PHB and nutrients concentration in effluent with acetate addition for Condition C (for 

Figures 3.2 and 3.3) 

 
Acetate  

(mg-C per time) 
0 135 270 400 530 

Acetate  

(mg-C/cycle) 
0 400 800 1200 1600 

TSS (mg/L)  4798±100 5050±90 5227±110 5436±90 

PHB content 

(%) 
0.81% 9.74%±1.58% 16.88%±1.14% 28.55%±1.69% 31.92%±1.05% 

TN (mg/L) 2±0.29 2.07±0.15 4.30±0.26 4.50±0.4 3.83±0.15 

TP (mg/L) 1.78±0.1 0.67±0.25 1.07±0.31 0.83±0.12 1.10±0.3 

Ammonia  

(mg-N/L) 
1.1±0.21 0.63±0.21 0.9±0.1 0.87±0.06 0.73±0.06 

Nitrate 

 (mg-N/L) 
0.23±0.06 0.33±0.06 0.83±0.06 1.00±0.1 0.97±0.26 

COD (mg/L) 20±5.5 21±2 46±6 59±3 77±8 

 

Table B.4 Volume and concentration of addition of acetate solution (for Table B.1, Table B.2 

and Table B.3) 

 

Acetate addition (mg-C/cycle) 

Added acetate concentration 

(mg-C/L) Added volume (mL/cycle) 

400 
1690 mg-C/L 

240 

800 
3340 mg-C/L 

240 

1200 
5000 mg-C/L 

240 

1600 
6700 mg-C/L 

240 
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Table B.5 Concentrations for Condition B with the addition 1200 mg-C/cycle acetate (for Figure 

3.4) 

 

Time (min) PHB  (w/w) 

COD 

(mg/L) TP (mg/L) TN (mg/L) 

Ammonia 

(mg/L) 

Nitrate 

(mg/L) 

0 34.09% 32 0.57 1.42 0.3 0.27 

10 34.09% 334 7.9 13.5 4.3 0.4 

13   594 7.9 13.5 4.3 0.4 

25   578 12.3 12.1 4.1 0.3 

40 35.64% 550 19.7 10.8 4 0.2 

55 37.21% 541 20.3 9.1 3.7 0.1 

85   198 15.6 5.3 2.1 0.3 

115 34.17% 47 11.7 3.7 1.2 0.5 

145   43 6.9 3.3 0.9 0.6 

175 31.25% 37 3.2 3.3 0.8 0.7 

178   325 3.2 3.3 0.8 0.7 

190   291 7.5 3.2 0.7 0.7 

205 32.93% 282 7.7 2.9 0.8 0.3 

220 35.02% 272 8.3 2.5 0.7 0.1 

250   49 5.8 2.2 0.8 0.1 

280 34.26% 42 3.4 1.9 0.5 0.2 

310   37 1.7 1.8 0.5 0.2 

340 33.96% 35 1 1.37 0.37 0.3 
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APPPENDIX C. EXPERIMENTAL DATA FOR ALL TREATMENT CONDITIONS 

WITH FERMENTED CORN STILLAGE ADDITION 

 

Table C.1 PHB and nutrients concentration in effluent with fermented corn stillage addition for 

Condition B (for Figure 3.5, 3.6 and 3.7) 

 

VFA (mg-C per time) 0 100 150 200 250 

VFA (mg-C/cycle) 0 200 300 400 500 

PHB content (%) 1.16% 7.27%±0.57% 8.47%±0.51% 9.73%±0.25% 10.83%±0.31% 

TN (mg/L) 1.27±0.12 7.1±0.55 8.00±0.62 9.50±0.55 11.60±1.12 

TP (mg/L) 1.33±0.15 29.80±1.3 63.50±12.3 91.67±3.79 116.67±6.1 

TP in biomass (%)   6.70% 7.8% 8.9% 8.20% 

Ammonia  

(mg-N/L) 
0.4±0.2 1.37±0.35 2.3±0.46 2.87±0.32 3.40±0.4 

Nitrate  

(mg-N/L) 
0.13±0.06 0.87±0.15 1.00±0.26 1.67±0.15 2.33±0.32 

COD (mg/L) 19±2 145±6 182±20 211±19 256±8 

 

Table C.2 PHB and nutrients concentration in effluent with fermented Mg(OH)2-precipitated 

corn stillage addition for Condition B (for Figure 3.5, 3.6 and 3.7) 

 

 

VFA (mg-C per time) 100 200 400 

VFA (mg-C/cycle)  200  400 800  

PHB (%) 7.5%±0.21% 12.69%±0.57% 24.26%±0.36% 

TP (mg/L) 5.53±0.6 10.36±0.8 25.56±4.79 

TN  (mg/L) 4.4±0.62 9.33±0.93 19.16±2 

Ammonia (mg-N/L) 2.17±0.31 3.5±0.89 3.93±0.25 

Nitrate (mg-N/L) 0.5±0.1 0.5±0.1 0.7±0.3 

COD (mg/L) 96±11 188±14 310±22 

TP in sludge (d.w %) 6.50% 7.00% 8.60% 
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Table C.3 Volume and concentration of addition of fermented corn stillage (for Table C.1 and 

Table C.2) 

 

  

VFA Concentration 

(mg-C/L) 

 Added volume 

(mL/cycle) Added VFA (mg-C/cycle) 

Fermented corn 

stillage  670 

300 200 

600 400 

Fermented Mg(OH)2-

precipitated corn 

stillage  1,115 

180 200 

360 400 

720 800 
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